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Summary

A general randomization model for experiments in nested block designs is presented
and conditions are given for obtaining the best linear unbiased estimators under the
model. Since the conditions appear to be severely restrictive, a resolution of the overall
randomization model into four relevant stratum submodels is considered. Conditions
for obtaining the best linear unbiased estimators under these submodels are found. In
addition, it is shown under which conditions the best linear unbiased estimator for a
treatment parametric function obtainable under a submodel becomes such an
estimator under the overall model. Two discussed examples illustrate application of
the theory. Finally, some general concluding remarks complete the paper.

' Introduction and preliminaries

In an earlier paper by Califiski and Kageyama (1991) a randomization model
for experiments with one stratum of blocks of experimental units has been
presented and discussed from the point of view of the intra-block and inter-block
analysis. The aim of the present paper is to extend the model to the experimental
situation in which the blocks are further grouped into some superblocks, forming
in that way two strata of blocks. Such situations appear quite often in practice,
particularly in agricultural experimentation. Common examples are the lattice
designs or, more generally, the so-called resolvable incomplete block designs (see,
e.g., John, 1987, Section 3.4). While in an ordinary block design (as considered
in the original earlier paper) the stratification of the experimental units leads
to three strata, of units within blocks, of blocks within the total experimental
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area, and of the total area, in the extended situation to be considered here four
strata can be distinguished. These are of units within blocks, of blocks within
superblocks, of superblocks within the total experimental area, and of the total
area. In the consequence, the extended randomization model has to take into
account three instead of two stages of randomization, viz., of units within blocks,
of blocks within superblocks and of the latter within the total area.

A similar situation to that just described occurs when in an ordinary block
design the plots (units) are divided into two or more sub-plots. Here, again, four
strata appear, of sub-plots within the main plots, of the main plots within blocks,
of blocks within the total experimental area, and of that total area (see, e.g.,
Pearce, 1983, Section 6.1). If the randomization is performed independently
within each of the first three strata, then virtually the same randomization model
- as that mentioned above will apply. Thus, although the randomization model to
be considered in the present paper is derived in the context of plots grouped into
blocks and the latter grouped into superblocks, it can perfectly well be thought
as suitable for subplots grouped into main plots and those into blocks.

In both of these situations, the relations between the strata are of nesting
type. One can speak in this context of two systems of blocks, one nested in the
other, either of blocks nested in the superblocks or main plots nested in the
blocks. Following a recent paper by Mejza and Kageyama (1994), who have
generalized the concept of nested balanced incomplete block designs originally
introduced by Preece (1967), the term "nested block (NB) design" will be adopted
for the designs considered in the present paper. For references concerning nested
balanced incomplete block designs or certain extensions of them see Mejza and
Kageyama (1994). Similarly as in their, also in the present paper nested block
designs will be considered in a most general framework.

As in the original paper by Califski and Kageyama (1991), the discussion of
statistical consequences of the derived randomization model will concern mainly
the best linear unbiased estimation of treatment parametric functions under the
overall model and under the submodels related to the different strata. In the
traditional block designs with two strata of blocks, where the superblock stratum
is usually composed of single replicates (see, e.g., John, 1987, Table 8.3), only
two analyses are of interest, the intra-block and inter-block analysis, the super-
block stratum contributing nothing to the estimation of parametric functions. In
the present paper, however, a general situation is to be considered, in which the
inter-superblock analysis may also be of interest, at least in some cases.

The basic notation and terminology of the present paper follows that of
Calinski and Kageyama (1991). As usual, a block design setting out v treatments
in b blocks is described by its vxb incidence matrix N = AD’, where A’ is the
nxv design matrix for treatments and D’ is the nxb design matrix for blocks.
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Such design will be denoted by D*. The grouping of blocks of D* into superblocks
is reflected by the partitions A’ = [A}: A): ... 1Al , D=diag[D,:D,:...: D,]
and, consequently, N =diag [N, : N, : ... : N_], where A;, D, and N;, = A; D}, de-
scribe a component design confined to superblock % (h = 1,2,...,0). The resulting
design setting out the v treatments in a superblocks is then denoted by D and
described by its vxa incidence matrix R = AG’, where G’ is the nxa design matrix
for superblocks of the form
G’ =D'diag (e o .. 1, 1=diag[1, : L, ..:1, 1,

with b; denoting the number of blocks in superblock %, and n; the number of
units (plots) in that superblock, i.e. its size;

myp= Lok, if Ky = ki, kogy s oo Ry gy T

denotes the vector of block sizes within superblock /. The element r;, of R denotes
the number of replications of treatment i in superblock /. The matrix R can also
be written as

R=[r;:ry: ...:ix, 1, where r,=[ry,ry, ... ]

Evidently, N1, =R1,=r =[ry, 1y, ... ,,] is the vector of treatment replications
in the whole NB design, as well as in D* and D,N'1l, =k =[Kk), K, ... ,Kk,]is the
vector of block sizes in D*, R'1, =n = [n,, ny, ... ,n,1 is the vector of superblock
sizes in D. Similarly as r* =AA’ and k® = DD’ are the diagonal matrices of
treatment replications and block sizes, respectively, n® = GG’ is the diagonal
matrix of superblock sizes, i.e. with numbers n;, on the diagonal. The total number
of units, or plots, used in the experiment is n = 1,r = 1,k = 1/n. For convenience,
a component design described by N, will be denoted by D = )

Since it is intended to consider a general case, disconnected designs are also
covered. However, because of the above partitioned structure of N, with its
submatrices N, A =12,...,qa, corresponding naturally to the superblocks, the
assumption made in Califski and Kageyama (1991, p. 98), that N has a quasi-
diagonal structure reflecting the disconnectedness of the design, cannot be
adopted here. Nevertheless, the incidence matrix of a disconnected design D" or
D can always be visualized in that form after proper reordering of its rows and
columns.

Similarly as in Califiski and Kageyama (1991), distinction will be made
between the potential (or available) number of superblocks, N, , and the number,
a, of those actually chosen from them to the experiment. The usual situation is
that a = N, but in general a s N,.
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Also, it will be convenient to distinct between the potential (available) number
of blocks within a superblock, denoting it by B with appropriate subscript, and
the number of those of them actually chosen to the experiment, denoting it by b
with a relevant subscript. Finally, a distinction will be made between the poten-
tial number of units (plots) within a block, denoting it by K with a subscript, and
the number of those of them actually used in the experiment, denoting it by &
with a subscript.

2. A randomization model

The same approach as that used by Calinski and Kageyama (1991, Section
2) will be adopted here to derive and investigate the model of the variables
observed on the n units actually used in the experiment. The extension consists
in applying a threefold instead of twofold randomization of superblocks within
a total area of them, of blocks within the superblocks, and of units within the
blocks.

2.1. Derivation of the model

Suppose that there are N, superblocks, originally labelled v = 1,2,...,N, , and
that superblock v contains B, blocks, which are originally labelled &(v) =
1,2,...,B,. Further, suppose that block E(v) contains K, units (plots), which are
originally labelled n[g(v)] = 1,2,...,Ky,). The randomization of superblocks can
then be understood as choosing at random a permutation of numbers 1,2,...,N4,
and then renumbering the superblocks with & = 1,2,...,N, according to the posi-
tions of their original labels taken in the random permutation. Similarly, the
randomization of blocks within superblock v consists in selecting at random a
permutation of numbers 1,2,...,B,, and then renumbering the blocks with
J=1,2,...,B, accordingly. Finally, the randomization of units within block E(v)
can be seen as selecting at random a permutation of numbers 1,2,...,Kyq) and
then renumbering the units of the block with /= 1,2,...,Ky, accordingly (see
Calinski and Kageyama, 1991, p. 99). The usual assumption will be made that
any permutation of superblock labels can be selected with equal probability, that
any permutation of block labels within a superblock can be selected with equal
probability, as well as that any permutation of unit labels within a block can be
selected in that way. Finally, it will be assumed that the randomizations of units
within the blocks are among the blocks independent, that the randomizations of
blocks within the superblocks are among the superblocks independent and also
independent of the randomizations of units, and that all these randomizations
are independent of the randomization of superblocks.
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Utilizing the concept of a "null" experiment (cf. Nelder, 1965), let the response
of the unit labelled n[E(v)] be denoted by Uzgy and let it be denoted by
mygjky) if in result of the randomizations the superblock originally labelled v
receives label A, the block originally labelled E(v) receives label j and the unit
originally labelled n [E(v) ] receives label I. Now, introducing the linear identity

HEm1= K1+ (pe) = e o) + (ge = Brw) + Megem - REgm) >

where (according to the usual dot notation)

L% B,
U-[&(v)1=K§—<3) 2 M g1 M-[~(v)1=3312 5wl
n[E(v) 11 E(v)=1
and
NA
H-[-(-)1=NXIEI Wrel s

and defining the variance components (following Nelder, 1977)

N, .
2 £y 2
0= Wa=-17" Y (pwr-trp)’
v=1
NA
2 -1 2
op =Ny 2 OBy »
v=1
where
B’V
2 N 2
gy =By -7 Y (igeyr - )’
E(v)=1
and
2 1 & 1 % 2 :
0U=N/; EB:, 2 OU,E(V) >
val  E(vjml
where
2 1 Y 2
ot = Eeey = 17 Y (aggen — W)’
xlEW)=1

and also introducing the weighted harmonic averages By; and Kj; defined as
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N,
-1 -1 -1 2 2
BH w NA 2 Bv OB,V/UB

v=1

and

N, B,
= =i -1 =1 »
Ky =Ny EBV 2K§(v) OU kW) loy ,
v=1 E(v)=1

accordingly, one can write the linear model

Mgy = W+ o+ By + Ny 2.1)

for any indices A, j and [ resulting from the randomizations, where p = w.(,; is
a constant parameter, while o, f;5) and ny ) are random variables, the first
representing a superblock random effect, the second representing a block random
effect and the third a unit error. The following moments of these random variables
are easily obtainable:

E(ay) = EBjny) = E(y i) =0

Cov(ay, Bjay) = Cov(oy, Ny jgy) =0, whether h=h' or h=h',
Cov(Bjgny M joy) =0, whether j(h) =j'(h") or j(h)=j'(h'),

NN, -1)02 if h=h',

Cov(oy, ay) =
(%, ) Ni'oZ if h=h',

B (By -1 if h=h'and j=j ,
Cov(Biny» Byny = =B7 o2 if h=h' and j=j' ,
0 if h=h',

and

Kil By-1)0% if h=h',j=j,1=l,
Covny iy > ey = -Kg'o? if h=h',j=j, 1=l
0 if j(h)=j'(h") .
(The derivations are straightforward, similar to those used in Calinski and
Kageyama, 1988.)
Thus, the responses {m jj,} have in the conceptual null experiment the model
(2.1) with the properties

Bl jgny) = w



Randomization in nested block designs 51
and
i1, g -1y 2 -1y 2
Cov(mugjny, mrjgy) = Opp = Na~) 04 + dppr (857 — B ) o + 8,05 Oy - Ky ) op

where the &’s are the usual Kronecker deltas, denoting 1 if the indices coincide,
and 0 otherwise.

Further, taking into account (as in Califski and Kageyama, 1991, p. 101) the
technical error and denoting it by e; jzy , the model of the variable observed on
unit /[j(%#)] in the null experiment can be written as

Vit 1= Magjmy1 + €y = W+ Oy + B + Mooy + ey (2.2)

for any h, j and [. As usual, it will be assumed that the technical errors
{e11jny 1 are uncorrelated, with zero expectation and constant variance, o?, and
that they are independent of the remaining random variables in the model.
Hence, the first and second moments of the random variables {y; jinyp defined in
(2.2) have the forms

Ei iy =0

and

N L1 i
Covyijmy » Yrrjay) = Opw = Na~) 04 + 8487 - B ) op
+ Sy Oy — Ki") o + S 88 07 2.3)

for all I[ j(h)] and all I'[ j'(h')].

Similarly as in the model considered by Califiski and Kageyama (1991, p.
101), it follows from these moments that the superblocks, the blocks within
superblocks and the units within the blocks, can be regarded as "homogenous"
in the sense that the observed responses of the units may, under the same
treatment, be considered as observations on random variables { Yirjny €Xchange-
able, without affecting their moments, individually within a block, in sets among
the blocks within a superblock, as far as the sizes of the blocks allow for this,
and also in sets of such sets among the superblocks, as far as the block sizes and
the numbers of blocks within the superblocks allow for this,

With regard to this type of homogeneity of units, blocks and superblocks, the
randomization principal can be obeyed in designing an experiment according to
a chosen incidence matrix N = [N; : N, : ... : N,] by adopting the following rule.
The a submatrices N,, h =1,2,...,a, are assigned to a out of the N, available
superblocks by assigning the h-th submatrix to that superblock which due to the
randomization has label 4, and the b, columns of N, are assigned to b, out of
the Bj, blocks available in the h-th superblock by assigning the j(h)-th column of
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and
& = N.") 04+ 04 (00— Bal) oo+ dppdie O ~Ki) 92
ov(rmgjny My rjuey) = @nn = No7) 04 + Oy 87 = B ) o + dpp0;7 Oy - Ky ) op

where the &’s are the usual Kronecker deltas, denoting 1 if the indices coincide,
and 0 otherwise.

Further, taking into account (as in Califski and Kageyama, 1991, p. 101) the
technical error and denoting it by e; ;s , the model of the variable observed on
unit / [(%)] in the null experiment can be written as

YiLity 1= M1 + i1 = W+ O, + B+ Ny + ey » 2.2)

for any h, j and [. As usual, it will be assumed that the technical errors
{e1(j) ) are uncorrelated, with zero expectation and constant variance, o?, and
that they are independent of the remaining random variables in the model.
Hence, the first and second moments of the random variables 7 j(h)]} defined in
(2.2) have the forms

Ei iy =0

and

iy Lipls
Covyijmy » Yrrjay) = Op = No~) 04 + 8487 - B ) op
+ 83,0, Oy — Kif") o + 8y dy 0w ok, 2.3)

for all I[ j(h)] and all I'[ j'(h')].

Similarly as in the model considered by Califiski and Kageyama (1991, p.
101), it follows from these moments that the superblocks, the blocks within
superblocks and the units within the blocks, can be regarded as "homogenous"
in the sense that the observed responses of the units may, under the same
treatment, be considered as observations on random variables { Yijry) €Xchange-
able, without affecting their moments, individually within a block, in sets among
the blocks within a superblock, as far as the sizes of the blocks allow for this,
and also in sets of such sets among the superblocks, as far as the block sizes and
the numbers of blocks within the superblocks allow for this,

With regard to this type of homogeneity of units, blocks and superblocks, the
randomization principal can be obeyed in designing an experiment according to
a chosen incidence matrix N =[N, : N, : ... : N,] by adopting the following rule.
The a submatrices N,, h = 1,2,...,a, are assigned to a out of the N, available
superblocks by assigning the h-th submatrix to that superblock which due to the
randomization has label 4, and the b, columns of N, are assigned to b, out of
the B, blocks available in the A-th superblock by assigning the j(%)-th column of
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N,, to that block which due to the randomization has label j(h). This is to be
accomplished for A& = 1,2,...,a. Then the treatments indicated by the j(h)-th col-
umn of N are assigned to the experimental units of the block labelled j(A), in
numbers defined by the corresponding elements of N = [n;y,)], i.e. the i-th
treatment to ;) units, in the order determined by the labels the units of the
block have received due to the randomization. This rule implies not only that
a <Ny ,butalsothat b, <B; for h =12,...,a, and that the units in the available
blocks are in sufficient numbers with regard to the vector of block sizes k , i.e.
that max ;) (kjz) s min g, Kg,) This means that either the choice of N is to
be conditioned by the above constraint, or an adjustment of N is to be made after
the randomization of blocks and superblocks (as suggested by White, 1975, p.
558).

Now, adopting the assumption of complete additivity, as in Califski and
Kageyama (1991, p. 102), equivalent to the assumption that the variances and
covariances of the variables {ay}, {B;}, {nijm))} and {e;jp)) do not depend on
the treatment applied, the adjustment of the model (2.2) to a real experimental
situation of comparing several treatments, v, in the same experiment can be
made by changing the constant term only. Thus, the model gets the form

Vit jnn @) = wE@) + o, + Bigny + Mgy + € jonn 2.9
for i=12,...,v, h=12,...a, j(b) = 1,2,...b5 LLi(A)] = 1,2,...k;p) With

Ny B, Ky

Elyy @] = @ =Ni' > By Y Key D, Bargeyi @) 2.5)
v=1 Ev)=l =m[E(Wv)I=1

where ()1 () is the true response of unit = in block § within superblock v to
treatment i, and with

Covlyy jin®» Yoiwyn @ = Cov(yijmp Yeryawn: (2.6)

as given explicitly in (2.3).

Finally, writing the observed variables {y; jz) ()} in form of an nx1 vector
V= [V}, ¥5 ... ,¥.l', where the subvector y;, represents the variables observed on
the ny, = Zjl(’;;)_l k4 units of the superblock 4, and the corresponding unit error
and technical error variables in form of nx1 vectors m and e, respectively, and
also writing the treatment parameters as T = [1y, Ty, ... ,T, ], where T; = (i), the
superblock variables as a=[a, oy, ...,0,]' and the block variables as
B =81, B ... , B,l', where B, = [B14), Banys - > By, )]’ one can express the model
(2.4) in matrix notation as

y=At+Ga+Df+m+e, (270
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and the cofresponding moments (2.5) and (2.6) in form of the expectation vector

E(y) =Ax (2.8)

and the dispersion matrix (covariance matrix)
Cov(y) = (G'G - N;'1,1;) 03 + (D'D - Bi'G'G) o, + (I, - K;'D'D) 0% + I,02,
2.9

respectively (see Section 1 for definitions of the matrices involved).

Note that the model (2.7), with properties (2.8) and (2.9), can be seen as a
generalization of the model used by Patterson and Thompson (1971), when
writing the dispersion matrix (2.9) in the form

Cov(y) = 0’%(G'P1G +D'TyD+1,),

where

=] %) 55 2 =10 2 ) 2
Iy =I,v,-N;y 11,04 /oy, Y1=(04 -Bp o) /o], oy=op+ Oe>»

and
Fo=Ipvs v2= (0123 o Kﬁl 0?]) /0:12 :
Furthermore, note that if
B,=B,=... =By, =B (say) and Kjy)=Kyy)=... = Kp) = K (say)

for each v (=1,2,...,N,), then the present model is comparable with that recently
considered by Mejza (1992, p. 269).

2.2. Main estimation results

Under the present model the following main results concerning the linear
estimation of treatment parametric functions are obtainable. These results are
relevant generalizations of those given in Section 2.2 of Califski and Kageyama

(1991).

Theorem 2.1. Under the model (2.7), with properties (2.8) and (2.9), a function
w'y is uniformly the best linear unbiased estimator (BLUE) of c't if and only if
w = A’s, where s = r ¢ satisfies the conditions

(k- Nr°N)N's =0 (2.10)
and

@ -Rr°R)Rs=0. (2.11)
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Proof. On account of Theorem 3 of Zyskind (1967), a function w'y is, under
the considered model, the BLUE of its expectation, i.e. of w'A't , if and only if

@, - PY)I(G'G-N;'1,1,) 0% + DD - B'G'G) o},
+(@,-K7'D'D)o? + L,o2lw=0,

where P, = A'r°A denotes the orthogonal projector on C (A’), the column space
of A’. If this is to hold uniformly for any set of the variance components
o3, 0%, o4 and o7, it is necessary and sufficient that (I, -P,)w=0,

@I,-P,)D'Dw=0 and (I, - P,)G'Gw = 0. But these equations hold simulta-
neously if and only if w=A's, (I, -P,)D'DA’s =0 and (I, - P,)G'GA’s = 0 for
some s. However, the latter two equations are equivalent to (2.10) and (2.11),
respectively. (5

In connection with this proof note that the component N3'1,1/,62% in (2.9)
does not play any role in establishing Theorem 2.1, since (I, - P,)1, = 0. For
the same reason the simplification of I'; to the form I,y;, as suggested by
Patterson and Thompson (1971), does not affect the BLUE of ¢'x.

Corollary 2.1. For the estimation of ¢'t = s'r*t under the model as in Theorem
2.1, the following applies.

(a) If N's =0, which implies R's = 0, the conditions (2.10) and (2.11) are
satisfied, and the estimated function is a contrast, i.e., ¢'l, =s'r = 0.

() If N's = 0, but R's =0, then (2.11) is satisfied, but to satisfy (2.10) it is
necessary and sufficient that the elements of N's obtained from the same con-
nected subdesign of D* are all equal. ’

(c) If R’s = 0, which implies that N's = 0, then to satisfy (2.11) in addition to
(2.10) it is necessary and sufficient that not only the elements of N's from the
same connected subdesign of D* are all equal, but also the elements of R's
obtained from the same connected subdesign of D are all equal.

Proof. 1t follows exactly the same pattern as the proof of Cofollary 2.1 in
Calinski and Kageyama (1991). |

Now a question arises, under which design conditions any function s'Ay is
the BLUE of its expectation. An answer to this can be given as follows.

Theorem 2.2. Under the model as in Theorem 2.1, any function w'y = s'Ay,
i.e. with any s, is uniformly the BLUE of E(w'y) = s'r’ if and only if

(i) both of the designs, D* and D, are orthogonal (in the sense recalled by
Calinski, 1993, Definition 2.7),

(ii) the block sizes are constant within any connected subdesign of D* and the
sizes of superblocks are eonstant within any connected subdesign of D.



Randomization in nested block designs 55

Proof. From the proof of Theorem 2.1 it is evident that s'Ay is the BLUE of
its expectation for any s if and only if

(I,-P,)D'DA' =0 2.12)
and
(I,-Py)GGA' =0 . (2.13)

Adopting the same reasoning as that used in the proof of Theorem 2.2 of Califski
and Kageyama (1991), the present results can be proved. a

Note that Remark 2.1 of Califiski and Kageyama (1991) applies here as well,
with an obvious extension to the design D. In particular, if the latter is connected,
which usually is the case, then the orthogonality condition for it can be written
as R = n"lrn’, which under the additional condition (ii) reduces to R = (1/ arl.

Remark 2.1. If the condition (i) and (ii) stated in Theorem 2.2 are satisfied,
i.e. if (2.12) and (2.13) hold, then

- Cov(y)A'
=AT[(RR' - N;'rr') o} + (NN’ - B7'RR)) 6% + (* - K7'NN') 0% + ¥*o?] |

which implies that both A’s and Cov(y)A’s belong to C (A") for any s, and thus,
by Theorem 4 of Zyskind (1967), the BLUEs obtainable under the model (257
with moments (2.8) and (2.9), can equivalently be obtained under a simple
alternative model in which the dispersion matrix (2.9) is reduced to I, multiplied
by a positive scalar (see also Rao and Mitra, 1971, Section 8.2). Moreover, it can
be shown (applying, e.g., Theorem 2.3.2 of Rao and Mitra , 1971) that the
equalities (2.12) and (2.13) are not only sufficient but also necessary conditions
for the BLUESs obtainable under the two alternative models to be the same. Thus,
(2.12) and (2.13) are necessary and sufficient for s'Ay to be both the simple least
squares estimator (SLSE) and the BLUE of its expectation, s’rﬁt, whichever
vector s is used.

3. Resolving into stratum submodels

Results of Section 2 are rather discouraging, similarly as those of section 2
in Califiski and Kageyama (1991). According to the results obtained there, in
many NB designs the BLUEs will exist under the model (2.7) for exceptional
parametric functions of interest only, or for none of them.

Ahis difficulty with the model (2.7) can be evaded by resolving it into four
submodels (one more than in the case of an ordinary block design; see Calinski
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and Kageyama, 1991, p. 105), in accordance with the stratification of the ex-
perimental units. In fact, the units of a NB design can be seen as being grouped
according to a nested classification with four strata. The strata may be defined
as follows:

1st stratum — of units within blocks, called "intra-block",

2nd stratum — of blocks within superblocks, called "inter-block - intra-super-
block",
3rd stratum — of superblocks within the experimental area, called "inter-
superblock",
4th stratum — of the total experimental area.
Using Nelder’s (1965) notation, this "block-structure" can be represented by
the relation

Units (plots) — Blocks — Superblocks — Total area.

Due to this stratification, the observed vector y can be decomposed as

Y=Y1tY2+¥Y3+Ys, 3.1)

where each of the four components is related to one of the strata. The component
vectors y; , f=1,2,3,4, are thus obtainable by projecting y orthogonally on
relevant subspaces, mutually orthogonal. The first component in (3.1) can be
written as

VAL LA 3.2)

where @, =I, -D'’k®D =1, - P, is exactly as defined in (3.3) of Califski and
Kageyama (1991), i.e., y; is the orthogonal projection of y on € (D), the ortho-
gonal complement of C (D’). The second component is

YoimitP2yes (3.3)

where now @, = D'’k™®D - G'n°G = Py, - Pg, with n® = (%™ = (GG}, ie., y,
is the orthogonal projection of y on C *(G') n C (D’), the orthogonal complement
of C (G') in C (D'). The third is

Ys=93yY , (3.4)
where @3 = G'n™G - n'11n1;= Pg' - Py, ie. y; is the orthogonal projection of y
on C*(1,) n C(G), the orthogonal complement of C (1,) in C (G'). Finally, the
fourth component is

Ya=941Y, (35)
where @, =n"'1,1/= Py , i.e,, y4 is the orthogonal projection of y on C (1,).
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~Evidently, the four matrices, ¢;, ¢,, ¢; and @4 (comparable with those of
Pearce, 1983, p. 153), satisfy the conditions

4

D=9 QP=0r, 9@ =0 for f=f', where f,f'=1,234, (3.6)

and the condition ¢; + @y + @3 + @, = I, the third equality in (3.6) implying in
particular that

¢D'=0, ¢G' =0 for f=1,2, 9l1,=0 for =123, 3.7
while the first two equalities in (3.6) imply that
rank(p)) =n - b, rank(gy) =b-a, rank(gs)=a-1 and rank(py) =1.

The projections (3.2), (3.3), (3.4) and (3.5) can be considered as submodels of
the original overall model (2.7). They are of particular interest when the condi-
tions (2.10) or/and (2.11) are not satisfied. Similarly as shown in Section 3 of
Calinski and Kageyama (1991), the submodel (3.2) leads to the intra-block
analysis, the submodel (3.3) leads to the inter-block-intra-superblock analysis,
the submodel (3.4) to the inter-superblock analysis. The submodel (3.5) underlies
the total-area or experimental-area analysis, suitable mainly for estimating the
general parametric mean (hence the last stratum is sometimes called the "mean
stratum"; see John, 1987, p. 184).

It will be now interesting to examine properties of the four submodels and
their implications for the resulting analyses. Since there are close similarities to
the results presented in Section 8 of Calihski and Kageyama (1991), only those
results which are different will be indicated here. They will be presented without
detailed proofs in most cases, as they would follow exactly the same patterns of
reasoning that were used in the earlier paper.

3.1. The intra-block submodel
The submodel (3.2) has the properties

E(y)) = @At and Cov(y,) = ¢;(c% + 0?),

which are exactly the same as in (3.11) and (8.12) of Calinski and Kageyama
(1991). Hence, the results concerning estimation of parameters and testing of
relevant hypotheses are exactly as presented in Section 3.1 of that earlier paper.

In particular, any contrast ¢'t such that ¢ = C;s for some s, where C, =
AgA’ =1 - NkaN’, receives the BLUE under this submodel, in the form
ct= s'Ay;. Its variance has the form

Var(c,’\t) =s'Cis(o? + od) = c'Cie(o? + o), (3.8)
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where C] is any generalized inverse (g-inverse) of C;.
The intra-block analysis of variance can be presented as
Yoy =QiCi Qi +yvy,

where Q;C1Q;, with Q; = A q,y, is the intra-block treatment sum of squares, and
Yy, with ¢; = ¢; - 9;A'C1A @1 = 91(I,, - A'CiA) @, , is the intra-block residual
sum of squares, the first on %, = rank(C,) degrees of freedom (d.f.), the second
on n-b-h;=rank(y;) d.f. The resulting intra-block residual mean square
st =yyy/(n-b-hy) is the minimum norm quadratic unbiased estimator
(MINQUE) of 0% = 0%; + oez, giving an unbiased estimator of (3.8), in the form
V,z\ar(c”\‘c) =s'C;ss’=¢'Cic L (3.9)

Under the multivariate normal distribution of y, one can test the hypothesis
©'Cix = 0, equivalent to E(y;) = 0 or E(y) € C (D'), by the variance ratio criterion
hi'Q(CiQ, /si , which has then the F distribution with h; and n-b - h; d.f,
central when the hypothesis is true.

3.2. The inter-block-intra-superblock submodel
The submodel (8.3), has the properties
E(y,) = g,A't = Dk®DA't - Gn G At
and
Cov(yy) = ,D'Dey(0f - Kji'op) + w0 + ) ,

similar to those of the inter-block submodel considered by Califiski and Kageyama
(1991, Section 3.2), but now with different form of ¢, .
The main estimation result under (3.3) can be expressed as follows.

Theorem 3.2. Under (3.2), a function W'y, = W',y is uniformly the BLUE of
c't if and only if @ow = @yA’s, where the vectors ¢ and s are in the relation
¢ =Cys, Cy=A@pyA’, and in addition s satisfies the condition

K, - Ny N kN NjINys =0, (3.10)
or its equivalence
K, - Nyr*N, (N, r°N, S*i{o]ﬁ;,s =0, (3.11)
where

K, = diag[Ky : Koo : ... : Ko, 1, Koy = K- nj 'k, K,
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and
NO = [NOI ¢ N02 R b NOa]’ N()h ~ NI; s n’l_l,lrhk;l =

Proof. A proof similar to that of Theorem 3.2 in Califiski and Kegeyama (1 991)
can be used. Here too, the following relations hold: D’k” Dq)z =@y, DD’ = KO,
Ag, D' =N, Cy=AqA’ = Nok*N, and N kK, =N, . O

Corollary 3.1. For the estimation of ¢'t = s’NOk *N{t under (3.2) the following
applies:

(a) The case N'Os = 0 is to be excluded.

(b) If Nbs = 0, then c't is a contrast, and to satisfy (3.10) or (3.11) by the vector
s, it is necessary and sufficient that K;Nis e ¢ (Nyr*Ny) = c(N}).

(c) If s is such that r)s =0 for A =1,2,...,q, then the conditions (3.10) and
(8.11) can be replaced by

KoN's = Ny (N, k°Ny)N,N's
and
K)N's = Ngr*ﬁﬁo(ﬁ;,r-ﬁﬁo)-fio N's,

respectlvely To satisfy any of them it is then necessary and sufficient that
K\N's e c(N)).

(d) If all block sizes are equal, i.e., by =k, = ... =k, = k (say), then any of the
conditions (3.10) and (8.11) is satisfied automatically by any s.

Proof. The results (a), (b) and (c) can be proved exactly as in Corollary 3.1 of
Califiski and Kageyama (1991). The result (d) is obtainable due to the equality

KONO— kN, where £ is the constant block size, and Lemma 2.2.6(c) of Rao and
Mitra(1971). Q

Now it may be noted that if the conditions of Theorem 3.2 are satisfied, then
any contrast c¢'t, such that 6 Cys for some s, receives the BLUE under the
submodel (3.2) in the form c't = s'Ay, = ¢'C3 Agyy. Its variance has the form

Var(c't) = s'N,Nys(o? - Kito?) + s'Nok*Njs (c%+o?). 8.12)
Evidently, if k) = ky = ... = k;, = k, the variance (3.12) reduces to
Var(c/’\r) = k's'NNys [kod + (1 - Kj'k) 0%+ 02 =

(k' NNy clkad + (1 - Ki'k) 0% + o2, (3.13)

An answer to the question what is necessary and sufficient for the condition
(3.10), or (8.11), of Theorem 3.2 to be satisfied by any s is as follows.
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Corollary 3.2. The condition (3.10) holds for any s, i.e. the equality
KN = NNk Ny NoNG (3.14)

holds, if and only if for any vector t that satisfies the equality Nyt = 0 the equality
NoKt = 0 holds too.

Proof. This can be proved exactly as Corollary 3.2 of Calinski and Kageyama
(1991). =]

Remark 3.1. Note that for Njt =0 to imply NoK,t = 0 it is sufficient that
Nt =0 implies Ny Kg,t, =0 for A=12,...a, with t = [t}, t5, ..., t,]". More-
over, for Ng,t; = 0 to imply NoKq,t; = 0 it is sufficient that kj, = k1, ie. that
the block sizes within the superblock % are all equal (h = 1595 a)

Remark 3.2. (a) Since Nyl; =0 and Ngf(olb =0 always, the necessary and
sufficient condition for the equality (3.14) of Corollary 3.2 can be replaced by the
condition that Nt = 0 implies ﬁokﬁto = 0 for any vector t, = [tyy, tog, ... , t0,) Such
that t, is k)-orthogonal to 1;, for any h, i.e. kjtg, for any h (= 1,2,...,0).

(b) If rank (Ng) = by, - 1 for any h, i.e., the columns of each N, are linearly
independent [as rank (Ng,) =rank (Nj) - 1], then a vector t;, that satisfies
Ny, t;, = 0 must be equal or proportional to 1, [ie., t, €C (1], and so satisfy
also the equality N, Kgts =0. Thus, the condition of Corollary 3.2 is then
satisfied automatically, whatever the block sizes are.

Remark 3.3. If the condition (8.10) holds for any s, i.e., if (3.14) holds, then
Cov(ya)peA’ = oA’ [Nk NoNoNo (o - Kig'od) + L(of + o)1

which implies that bot)h @, A’'s and Cov(ys)p,A’s belong to C (py A') for any s,
and thus the condition stated in Theorem 4 of Zyskind (1967), when applied to
Theorem 3.2, is satisfied. The implications of this are exactly as those indicated
in Remark 3.5 of Califski and Kageyama (1991). In particular it follows that
(8.14) is necessary and sufficient for the BLUEs and SLSEs to coincide under
this submodel. '

Thus, if the equality (3.14) holds, then the inter-block-intra-superblock ana-
lysis of variance can be obtained, in the form

Yooy = QeCoQe + YWy

where Q5C3Qs, with Q = Agyy, is the inter-block (-intra-superblock) treatment
sum of squares, and y'yoy, with ¥y = @3 - A Cs Ay = (I, - A'CoA)g; , is the
inter-block (-intra-superblock) residual sum of squares, the first on
hy = rank(C,) = rank(N,) d.f., the second on b -a - hy = rank(yy,) d.f. The result-
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ing inter-block (-intra-superblock) residual 1aean square Sa=yY Yy /(b-a-hy)
is the MINQUE of

03 = (b - a - hy) {tr(Ky) - tr[NoNok Ny Ny I} (03 - Kj7'o2) + gl (@ilb)

e

- In the case of all k; equal (k) = ky = ... = ky = k), (3.15) is reduced to

03 = kol + (1 - Kij'k) o2 + o2, (3.16)

e

further reducing to o3 = ko3 + olif k= Ky . It should be noted, however, that
b-a-hy=0if b-a=h, (obviouslyb-a= hy always). In that case no estima-
tor for of exists in the inter-block-intra-superblock analysis.

Thus, in the case of equal ks and b - @ > hy the mean square s2 can be used
to obtain an unbiased estimator of (3.13), in the form

V’\ar(c”\t) =k 's'N Ny s s5 = ke'(NoN) e s2 .

In general, the estimation of (3.12) is not so simple.

Furthermore, of ky=ky=...=k, =k, then Cov(y,) = 903, where o3 is as
defined in (3.16), and under the multivariate normal distribution of y it is possible
to test the hypothesis 'Cyt = 0, equivalent to E(y,) = 0 or Py E(y) € C(G'), by the
variance ratio criterion £3'Q,C;'Q, / s5, which has then the F distribution with
hy and b - a - hy d.f., central when the hypothesis is true. This, however, does
not apply to the general case, when k/s are not equal.

3.3. The inter-superblock submodel
The submodel (3.4) has the properties
E(y3) = 934t =GnGAT-n"'1 rt (3.17)
and
Cov(ys) = 4G Ges (04 ~ Biop) + 9aD'D gy (0 - Kjj'of) + 93 (0F + o) . (3.18)

The main estimation result under (8.4) can be expressed as follows

Theorem 3.3. Under (3.4), a function w'y;, = W'@gy is uniformly the BLUE of
c't if and only if @;w = @;A’s, where the vectors ¢ and s are in the relation
c=C3s, C3=AgpsA’, and in addition s satisfies the conditions

K, - Ky - (N, - No) [N, - Nok? (N, - No)T(Ny - NoyN, - Np)'s =0 (3.19)
and

[Lo - Ry (RinRy) RJR,s = 0, (3.20)
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where Ky =k™® - n”'kk’ and Ny=N - n"'rk/, as in Section 8.2 of Calihski and
Kageyama (1991), while K, and N, are as in Section 3.2 of the present paper,
Lo=n® - n'nn’ and Ry=R - n”'rn, with R as defined in Section 1.

Proof. Under (3.4), with (3.17) and (3.18), the necessary and sufficient condi-
tion of Theorem 3 of Zyskind (1967) for a function w'ys = W'y to be the BLUE
of E(W'p;) = w'gsA't is the equality

(I, - Py )[9:G'G 3 (0% - Bifo}) + 9 D'Depy (0f - Kii'0p) + 9s(0y + o,)Iw = 0.
It holds uniformly if and only if the equalities
(I, - Py a)psw = o, @~ P%A')%D'D‘Psw =0
and :
(I - Pon) @3G'Gyw = 0

hold simultaneously. The first equality holds if and only if psw = @;A’s for some
s, which holds if and only if Dpsw = Dg;A’s as well as if and only if Gow =
GosA's for that s. With this, the remaining two equalities read

(I, - Pox) 93 D'DpgA's =0 and (I, - Py 1) 93GGpA's =0

which are equivalent to (3.19) and (3.20), respectively, due to the relations
D'k’Dg; = 93, G'nGys; = @3, D‘I’gD' =Ko Kg , Ag3D’ = Ny - Ng, GG’ = Lo,
AgsG’ = Ry and Cy = AgsA’ = (N, - Nok (N - Np)' = Ren R}, Finally, the rela-

tion between ¢ and s follows from the fact that E(s'Ay;) = s'A@zA't = c't.

Corollary 3.3. For the estimation of 't = s'Ron "Ryt under (8.4) the following
applies: .

(a) The case Rj= 0 is to be excluded.

(b) IfR{= 0, then c't is a contrast, and to satisfy (3.19) and (3.20) by the vector
s it is necessary and sufficient that (K, - f(o)(NO - NO)’S € C (Np- N{) and, sim-
ultaneously, LiRys € C (Rp).

(c) If s is such that r's = 0, then the conditions (3.19) and (3.20) can be replaced
by

(K, - Ko)(N = No)'s = (Ng - No)[(No - Nk (N - NoyT(No - No)(N - Noy's
and
LoR’s = Ri(Ryn "Ry ReR's,

respectively. To satisfy them it is then necessary and sufficient that both
Ko - K)(N -Ny)'s € C(Np-Np and L¢R's € C(Rp).
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(d) If all block sizes are equal, i.e., k) = ky = ... = k, and all superblock sizes
are equal, i.e., ny =ng=... =n, then the conditions (3.19) and (3.20) are both
satisfied automatically by any s.

Proof. The result (a) is obvious, as R = 0 implies ¢ = 0. To prove (b) note that
vl,=0, and that the equations (N,-Npx;=(K,-K)Np-Nys and
Ryx, = LiR;s are consistent if and only if (3.19) and (3.20) hold, respectively,
since [(Np - Nok?(Ny - No)T"(Ny - No)k™ can be used as a g-inverse of
(No-Np) and Rm™R) R® as a ginverse of R, and since
(N, - Nok?(K, - Ko) = Ny - Ny and Rgn™Lj = R. The result (c) is obvious, as
(No-Ng)'s=(N - NO)'S and Rys=R's if r's=0. The result (d) can easily be
checked similarly as Corollary 3.1(d). J
Now it may be noted that if the conditions of Theorem 3.3 are satisfied, then
c't = s'Ay; = ¢'C3Aq@sy is the BLUE of the contrast ¢t under (3.4), and that its
variance has the form

Var(c') = s'RoRos(0% - Bijof) + 8'(Ny - No)(Ny - Noy's(a? - Kio?

+8'Ron°Rjys(0? + 6?) . (3.21)
Evidently, ifk; =ky=... =ky =k and n; =ny=... = n,=ny (=n/a), then the vari-
ance (3.21) reduces to
Py N T i 2 -1 2 T =) 2
Var(c't) = ny s'RoRys[ngoy + (8 - Byng)og + (1 - Ky k) oy + o]
= ¢'(ng RoRY) clngo} + (k - Bifng) of + (1 - Ki'k) oy + 671, (3.22)

It reduces further to Var(cl’\t) = ¢'(ng RoRy)c(ngoi + 02) if k = Biing =Ky , ie., if
the number of available blocks in each superblock is constant, equal to
ny/k (= b/ a), and the size of each available block is constant, equal to k.

An answer to the question what is necessary and sufficient for the conditions
of Theorem 3.3 to be satisfied by any s, can be given as follows.

Corollary 3.4. The conditions (3.19) and (3.20) hold for any s, i.e., the equalities
(Ko~ Ko)(Ng- Noy = (No- No) [(Ng- No)k*(No- NoyT"(No- No)(No- Ny (3.23)

and
LoRy= R'(Ron Ry RoR), (3.24)

hold, if and only if for any bxl vector t that satisfies the equality
(No - f‘]o)t =0 the equality (N, - f%)(KO - f(o)t =0 holds too, and for any ax1l
vector u that satisfies the equality Rgu = 0 the equality RjLyu = 0 also holds.
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Proof. The proof follows the same pattern as that of Corollary 3.2 in Calinski
and Kageyama (1991). (=

Remark 3.4. (a) Due to the relations
N, - No=Rmn?®GD’, K,-K,=DG(,-r'1,n)n?°GD’
and
Ro=R(, - n”'1,n),

the conditions given in Corollary 3.4 for the equalities (3.23) and (3.24) can be
reduced as follows. The equalities (3.23) and (3.24) hold simultaneously if and
only if for any (nonzero) vector that is n®-orthogonal to 1,, u, say (i.e. such that
n'u, = 0), the equality Ru = 0 implies the equalities

(Np - N9gDG'uy=0 and Ryn’u,=0.

(b) If rank(Ry) = a - 1, i.e. the columns of the matrix R are linearly inde-
pendent [as rank(Rg) = rank(R) - 1], then a nonzero vector u that satisfies
Ry = 0 must be equal or proportional to 1, [i.e., u € C (1,)], and so satisfy also
the equality RoLgu = 0. Moreover, with this rank of R, any vector t such that

n?GD't € C (1a) satisfies simultaneously the equalities (Ng- Np)t=0 and
(No - No)(K,, - Ko)t = 0. Any other t for which the first of these two holds has
to be such that GD't =0 and then the second equality also holds. Thus, the
conditions of Corollary 3.4 are then satisfied automatically, whatever the £/s and
ny’s are.

Remark 3.5. From the proof of Theorem 3.3 it is evident that the equalities
(3.19) and (3.20) hold simultaneously for any s, i.e. (3.23) and (3.24) hold, if and
only if Cov(ys)@sA’ = P xCov(ys)psA’, which shows that not only @sA’s but also
Cov(ys)psA’s belongs to C (p,A’) for any s, and thus the condition stated in
Theorem 4 of Zyskind (1967), when applied to Theorem 3.3, is satisfied. This
means that the BLUE of any function c¢'t, when ¢ € C (Cjy), obtainable under
the inter-superblock submodel (3.4) is simultaneously the SLSE.

Remark 3.5 implies in particular that if the equalities (3.23) and (3.24) hold,
then the inter-superblock analysis of variance is obtainable in the form

Yoy = Q5C5Qs + y'sy ,

where Q5C3Q3, with Q3 = A@gy, is the inter-superblock treatment sum of squares,
and y'yPay, with Y3 = @3 — psA'C A@s = @3(I,, - A'C3A) 3, is the inter-superblock
residual sum of squares, the first on /3 = rank(C,) = rank(R) d.f., the second on
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a -1 - hg = rank(y;) d.f. The resulting inter-superblock residual mean square
s3 =YYy /(a -1 - hj) is the MINQUE of

03 = (@ - 1 - hy) Htr(Lo) - tr[Rp(Ron*Ro) Rl } (02 - Bjlo3)
+(a-1-hy) (K, - Kp) (3.25)

- tx[(Ng - No)'[(No - Nok*(Ng - No)T"(No - No)} (0, - Kiz'of)+ of + 02

In case of
k1=k2=...=kb=k and =Ny = .. =N, = NG, (326)

the estimated variance parametric function (8.25) becomes
03 = nooi + (k - Biing)oh + (1 - Ki'k) ok + o2,

further reducing to noo3 + o if Bi'ng =k = Ky, i.e. By =ng/k (=b/a). It should
be noticed, however, that a -1 ~h3 =0 if a - 1 = hg (that a - 1 = h3 is obvious).
In that case no estimator for 0% exists in the inter-superblock analysis.

Thus, in the case of equal k/s, equal n,’s and a - 1 > A3, the mean square s

can be used to obtain an unbiased estimator of the variance (3.22), in the form
Var(c't) = ng's RgR{ s 52 = noe'(RgRy) ¢ s2 .

In general, the estimation of (3.21) is not so simple.

Furthermore, if the equalities (3.26) hold, then Cov(y;) = q)30§ and, similarly
as for the intra-block analysis, it can be shown that under the multivariate
normality assumption the quadratic functions Q4C3Q; /02 and y'ysy /o2 have
independent y? distributions, the first being non-central with £3 d.f. and with
the non-centrality parameter 83 = t'Cyt / 03, the second central with a - 1 - hgd.f.
Hence, the hypothesis ©'C3t=0, equivalent to E(ys)=0 [or @sAt=0, or
PgE(y) € C(1,)], can be tested by the variance ratio criterion

h3' QyC3Qs /53,

which under the assumed normality has then the F' distribution with A4 and
a -1 - hygd.f., central when the hypothesis is true. This, however, does not apply
to the general case, when the equalities (3.26) do not hold.

3.4. The total area submodel.

Considering the fourth submodel, (3.5), it is evident that its properties are

E(y) = pAT=n""1r't
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and
Cov(y,) = il(n"'n'n - N5'n) o2 + (n W'k - B'n"'n'n) o}
B AR kKool ,

the latter reducing in the case of equal ks and equal n;’s [ie. in the case of
(3.26)] to

Cov(y,) = @4l(ng - N,{ln) 0‘,24 + (k- B}}Ino) 0% +(1- K}}lk) 0%, + O'Z] :

In the general case the following main result concerning estimation under
(8.5) is obtainable. ’

Theorem 3.4. Under (8.5), a function w'y, = w'q,y is uniformly the BLUE of
¢'t if and only if @,w = ¢,A’s, where the vectors ¢ and s are in the relation
c=ApA’s (= n'rr's).

Proof. This can be proved following exactly the same pattern as that in the
proof of Theorem 3.1 of Califski and Kageyama (1991, Section S0 Q

Remark 3.6. (a) The only parametric functions for which the BLUEs under
(8.5) exist are those defined as ¢'t = (s'r)n"'r't, i.e. the general parametric mean
and its multiplicities, contrast being excluded a fortiori (as 1,¢ =1's).

(b) Since

Cov(y)psA' = A l(n"'n'm - Ni'n) o + (v 'Kk - Bi'n"'n'm) op
+(1-Kj'n'K'k) 6?1,

the BLUEs under (3.5) and the SLSEs are the same (on account of Zyskind’s,
1967, Theorem 4, applied to Theorem 3.4).

Ifct= (s’r)n'lr’t = (c'lv)n’lr’r, then the variance of its BLUE under (3.5), i.e.
of ¢t = s'Ay, = ¢'(A pA") A @y, is of the form

Var(c,'\t) = s’A(p4A’s[(n_ln’n -Ny, 1n)o‘% +(n'Kk-B [,1 n"'n'n) cr%;
+(1 - K7'n 'K'k) 0% + 0]
=nY(c'1,)(n'n'n - Ni'n) o2 + (v 'K’k - B7'n"'n'm) o
+ (1 -Kin 'Kk 0¥ +o?]. 3.27)
Evidently, if the equalities (8.26) hold, then the variance (3.27) reduces to
Var(c'n) = n"{e'1,)2I(1 - Ni'a)ngo + (1 - Bk 'nolk o2

+ (1 » K5 B oorindl (3.28)
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and if, in addition, a = N,, By =ny/k (=b/a), Ky =k, which may be considered
as the usual case, then

Var(c) = nl(e'L,)%02 . (3.29)

Finally, it may be noted that since Pox=9, (as n 1,1 is a g-inverse of
A@,A’ = n”'rr’) and, hence,

(In = P%A' )y4 =0 and (Iﬂ a P'P4A' ) Cov(y4) =0 j

the vector PoaYi=ys= n_llnlgy is itself the BLUE of its expectation, n™'1,r'x,
leaving no residuals.

3.5. Some special cases

It follows from the considerations above that any function s’Ay can be resolved
into four components in the form

s'Ay=s'Q; +85'Q, +s'Qq + s'Qy, (3.30)

with Q, = Ay, =Aqyy, Q;=Ay; =Aqy, Q;=Ay; =Aqsy, Q, =Ay, =Aq,y. Each
of the components in (3.30) represents a contribution to s'Ay from a different
stratum. Similarly as in Califski and Kageyama (1991, Section 3.4), the compo-
nents s'Q;, s'Q,, s'Qs, and s'Q, may then be called the intra-block, the inter-
block-intra-superblock, the inter-superblock and the total-area component,
respectively.

In connection with formula (3.80) it is interesting to consider some special
cases of the vector s (and hence of ¢ = ras), similarly as in Section 3.4 of Califiski
and Kageyama (1991). As the first case suppose that N's = 0, i.e., s is orthogonal
to the columns of N [or, equivalently, thatA’s e C 1(D")], which also implies that
r's=0 (ie. 1,c=0). Then s'Q,=0 and s'Q3=-s'Q,, giving the equality
s'Ay = s'Q;. Thus, in this case, only the intra-block stratum contributes. As the
second case, suppose that s is such that N's = 0 but the conditions @,A’s = 0 and
GA’s = 0 are satisfied [or equivalently, that A’s € C l(G’) N C (D"], which also
implies that R's=0. Then s'Q;=0 and 8'Qs=-8'Q,, which implies that
s'Ay = s'Ag,y, showing that the contribution comes from the inter-block-intra-
superblock stratum only. As the third case suppose that s is such that R's = 0
but it satisfies the conditions 9A's=0,9p;A's =0 and 1,,A's = 0 [or, equivalently,
that A's € C*(1,) n C(G)], which also implies that r's = 0 (i.e., 1,c = 0). Then
s'Q, =s8'Qy =8'Q, =0, giving the equality s'Ay =s'Qg. Thus, in this case, the
contribution comes from the inter-superblock stratum only. Finally, suppose that
s € C(1,), ie., that s is proportional to the vector 1, [or, equivalently, that
A's € C(1,). Then, on account of (8.7), s'Q;=8'Q,=5'Q;=0, giving
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s'Ay = s'Q,. This means that the only contribution is then from the total-area
stratum.

Applying to the above cases the results of Section 2.2, one can prove the
following. 1

Corollary 3.5. The function s'As is the BLUE of c't = s'rt under the overall
model (2.7) in the following four cases:

(a) N's = 0 (implying r's = 0); the BLUE is then equal to s'Q; and its variance
is of the form

Var(c't) = s’ras(o%, - 03) = c’r‘ac(cr%, + 062) : (3.31)

(b) N's = 0, but ¢;A's =0 and R's =0, provided that the first part of the
condition (ii) of Theorem 2.2 holds with regard to those connected subdesigns of
D* to which the nonzero elements of s correspond; the BLUE is then equal to
s'Q, and its variance is of the form

Var(c”\t) = s’NN’s(o% - Kfllo%]) + s’ras(O%] - 03) . (3.32)

(¢) R's = 0, but ¢;A's =0, @,A’'s =0 and r's = 0, provided that the whole con-
dition (ii) of Theorem 2.2 holds with regard to those connected subdesigns of
D* and D to which the nonzero elements of s correspond; the BLUE is then equal
to s'Q3 and its variance is of the form

Var(c't) = s RR's(02 - Bjlo2) + /(N - No(N - No)'s(o? - Kij'oP)
+ s’ras(o?j + 0?) ; (3.33)

@ s=n"Y(s'r)1, =n"'(c'1,)1,, provided that the whole condition (ii) of Theo-
rem 2.2 holds; the BLUE is then equal to s'Q, and its variance is of the form
(3.27).

Proof. These results can be proved in a similar way as those in Corollary 3.3
of Calinski and Kageyama (1991). See also Remark 3.7 and 3.8 there. a

Remark 3.7. For the case (b) of Corollary 3.5 it should be noted that the
conditions @;A’s =0 and R's =0 (i.e. r;s =0 for all &) imply that the design
D"*isdisconnected, and also any component design D), (h=1,2,...,a)is disconnected
or such in which treatments to which nonzero elements of s correspond are not
present (i.e., the corresponding rows of N, are void).

Remark 3.8. For the case (c) of Corollary 3.5 it should be noted that the
conditions ¢,A’s =0, @,A’'s =0 and r's =0 imply that the design D" is discon-
nected, and also the design D is disconnected.

Also note that if k; = kg = ... = k = k, then the formula (3.32) reduces to
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Var(c't) = c’r'ac[kof; +(1 - Ki'k) o+ of.
If, in addition to the equality of all kis,alson) = ny = ... = n, = ny, then the formula
(3.33) reduces to
Var(c”\t) =c'r’clngo’ + (k - Bilngiog + (1 - Brkyor + o2l

Finally, if all ks are equal and all n’s are equal, then the variance given in
Corollary 3.5 for the case (d) reduces from (3.27) to (3.28), or possibly to (3.29).

4. Examples

The theory presented in the previous sections will now be illustrated by some
examples.

Example 4.1. Let the block design considered as Example 3.1 in Califiski and
Kageyama (1991) [taken from Pearce (1983, p. 102)] be redefined as N =
[N;: Ny: N;l, where

Superblock 1 Superblock 2 Superblock 3
11 11 Il
11 15 it
11 151 11

Nl- il N2=11 and N3_ ik
00 10 Lyl
00 01 11

Le. as a nested block design with three superblocks (@ = 3), each composed of two
blocks (b; =by=bg=2). The blocks within a superblock are of equal sizes,
kiqy = koy = 4, ki) = koo =5 and k1) = ko(g) = 6. While the incidence subma-
trices Nj, Ny, Ny describe the component designs within the three superblocks,
Dy, Dy, D, the design for superblocks, D, is described by the incidence matrix

S O N DMNDNDN
= DN DMNDND
DD DN DN DN DN

Evidently, the columns of R are the vectors of treatment replications in the
component designs. The treatment replications for the whole design are then
given by the vector r = [6, 6, 6, 6,3, 3]' (= R1y), while the superblock sizes are
given by the vector n = [8, 10, 12]' (= R'1¢). Suppose that this design is applied
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to available experimental units grouped into blocks and those into superblocks,
all of conformable sizes, to allow for the threefold randomization performed as
described in Section 2.

To see for which contrasts the BLUEs under the intra-block submodel exist,
it may be helpful to find the matrix C; = ¥’ - Nk°N'. Here

143 -37 -37 -37 -16 -16
-37 143 -37 -37 -16 -16
_1]-37 -37 143 -37 -16 -16
30| -37 -37 -37 143 -16 -16
-16 -16 -16 -16 74 -10

-16 -16 -16 -16 -10 74

Evidently, rank(C;) = v — 1 = 5, which also follows directly from the fact that the
design is connected (see , e.g., Califiski, 1993, Lemma 2.2). This implies that the
columns of C,; span the subspace of all contrasts (of all vectors ¢ representing
contrasts). Hence, on account of Theorem 3.1 of Calinski and Kageyama (1991),
for any contrast ¢’t there exists the BLUE under the intra-block submodel. It is
of the form c'v = s'Ay;, where s is such that ¢ = C;s. In particular, to estimate
the contrast between treatment 1 and treatment 2 one can use the vector
s =(1/6)[1, -1, 0, 0, 0, 0]'. It should, however, be noted that for this s the equality
N's = 0 holds, which on account of Corollary 3.5(a) implies that s'Ay; = s'Ay, and
this function is the BLUE of c".c under the overall model (2.7). The same is true
for any contrast among the first four treatments, as can easily be seen from the
form of the matrix N of the considered design. 7
As to the contrasts for which the BLUEs under the inter-block-intra-super-
block submodel may possibly exist, they are to be searched in view of the matrix
C,y= Nok_é ﬁb (see Theorem 3.2). For that note that in the present example

N, =[No;: Nogg: Nogl =[0: Noy: 01,

with
N _1foo000 1-1Y
2 9(0000-11
from which
00 0O O O
0 00O O O
1 O 050} O {0 (0)
Cz—lo 0000 0 0l of rank 1.
OF OLI0% OF "I =1
OO O () =kt
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This shows that there is only one contrast for which the BLUE under the
considered submodel may exist, the contrast between treatment 5 and treatment
6. It can be represented by the vector ¢ = Cys, where s = 10[0, 0, 0, 0, 1, 0]'. Since
the block sizes within the second superblock are equal (ky() = ky(g) = 5), this being
the only superblock which contributes to N and hence to C,, the BLUE under
the inter-block-intra-superblock submodel really exists for this contrast, as it
follows from Corollary 3.2 and Remark 3.1. It has the form ct= s'Ay,.

Turning now to the estimation of contrasts under the inter-superblock sub-
model, it should be recalled (from Theorem 3.3) that the BLUEs may exist only
for such contrasts which are generated by the matrix Cz;=A@A’ =
(No - Nok (N, - Np)'. Since here

1L 0170, <181
1 100-1-1
= 1(1 100-1-1
NiiesdNG =51 bégugh gropmtt nriil 5
=PRORFQIRONT D D
-2-2 00 2 2
it follows that

1 1 1 1-2-2

1 11 1-2-2

1 |1 1p10 mig|-2

C3—30 111 1-2-9 , of rank 1.

-2 -2-2-2 4 4

-2 -2-2-2 4 4
This shows that there is only one centrast for which the BLUE under this
submodel could possibly exist, the contrast between treatments 1, 2, 3, 4 and
treatments 5, 6. To see whether the BLUE for this contrast really exists, one
may refer to Corollary 3.3(b). To make use of it, note that

34 34 34 34 -68 -68
34 34 34 34 -68 -68
77 3 v __?-_ 5 5 159 5=10 =10
(Ko - Kp) (Np - Ny)' = 75 5 5 5 5-10 -10 | of rank 1.
-39 -39 -39 -39 78 178
-39 -39 -39 -39 78 78

Evidently, no (nonzero) linear combination of this matrix can be a linear combi-

nation of the matrix (N - Np)'. Also, it can be noted that

9 11 11 -2 -2
b=g OF OO OO0 of “rank ™1
=1 =10 =1 =] RoREO

from which
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8 34 34 34 34 -68 -68
LOR'O=% 5 5 5 5 -10 -10 |, of rank 1.
-39 -39 -39 -39 78 78
Certainly, no (nonzero) linear combination of the latter matrix can be a linear
combination of the former. Thus, the conditions of Corollary 3.3(b) are not
satisfied, and so there does not exist the BLUE under the inter-superblock
submodel for any contrast, for that indicated above in particular.

Finally, if one is interested in estimating the general parameter mean,
c't=n lrr the BLUE of it i 1s obtainable under the total-area submodel in the
form c't = s'Ay,, where s =n'1,, i.e. simply in the form n"'1y. This estimator
is equal to s'Ay. However, it is not the BLUE under the overall model (2.7), as
the condition of Corollary 3.5(d) is not satisfied.

Example 4.2. Let the block design considered as Example 3.3 by Califiski and
Kageyama (1991) [taken from Pearce (1983, p- 225)] for a 23 factorial structure
of treatments, with the three factors denoted by X, Y and Z, be now redefined as
a nested block design with two superblocks (a = 2), according to the partitioned
incidence matrix N = [N; : Nz] where

Treatment Superblock 1 Superblock 2
1 OIS 11 [0 0 0 O]
X 0000 B dl wdbidl
Y Oi0LE0 B0 ) bl
Z OS0E 080 IESL D)
XY Nl meie0 N2=lo 0 0 0
XZ 1 IS0 0 ) (0 {0)
YZ R @l al 0 00O
XYZ 0 00O el e 2

(treatment 1 representing the combination of all three factors at the lower level,
treatment X representing the combination of factor X at the upper level with Y
and Z at the lower level, etc.). Each of the two superblocks is composed of four
blocks (b, = by = 4), of size 3 in the first superblock (k1) = koy = kary = kyy = 3)
and of size 5 in the second (k) = ko) = kyo) = kygy = 5). From the incidence
matrices Ny, h = 1, 2, describing the component designs D; and D,, the incidence
matrix describing the design D is obtainable, as
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SWWWwoOoOoO W
o oo UTUtot O

From this matrix, the vector of treatment replications for the whole design is
r=[3,5,5,5,3, 38,8, 5]', and the vector of superblock sizes is n = [12, 20].
Similarly as for the first example, it is assumed that this design is applied to
available experimental units grouped into blocks and those joined into super-
blocks, all of them of conformable sizes, so that the appropriate threefold ran-
domization can be performed.

For the estimation under the intra-block submodel one needs to examine the
matrix C,. Here it is

(15 0 0 0 -5 -5 -5 0]
027 -9-9 0 0 0 -9
0 -927 -9 0 0 0 -9
2 0 -9-927 0 0 0 -9
S S TR D o e AT S e e 6
-5 0 0 0 -515 -5 0
-5 0 0 0 -5 -515 0
{ 0-9-9-9 0 0 027
It shows that due to the disconnectedness not all contrasts can be estimated
under the intra-block submodel. In fact, the BLUEs under this submodel exist
for contrasts giving the main effects and two factor interactions, but not for the
contrast that gives the three factor interaction, i.e. not for the contrast repre-
sented by the vectore=[-1,1,1, 1, -1, -1, -1, 17"
As to the estimation under the inter-block-intra-superblock submodel, it in-
volves the matrix N, = [Ny;, Ny,l, where

S R W 0 0 0 0

00 050 - Rees it e

Ou-0 00 Lpet gy oy

iy |50 0. 40 = D 2ofhel oty oy i
BT e o A cn gng Nog.= 410141000 8 o
I R Rt ) 0410 10,540

| e ) e T

Qe O 0 <0 Bl -

Hence,
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(15 0 0 0 -5 -5 -5 0]
o' ‘g “Ag¥ B p " e
0-83 9-3 0 0 0-3

1 dhi0e <Baihlgbedd b0 G
C2=%|-5 0 0 015 -5 -5 o] of rank 6.
5 0 0 lo 5l16 5. 0
fgretign rghe g 1B s 421 g

0 -3-3-3 0 0 0 9

By comparing C, with C, one can see that the same contrasts for which the
BLUEs exist under the intra-block submodel can be considered for estimating
under the inter-block-intra-superblock submodel. On account of Remark 3.1, the
equality of block sizes within the superblocks implies that the BLUEs under this
submodel really exist for all these contrasts. Thus, all the main effects and all
the two-factor interactions receive BLUEs under both submodels.

Now, as to the estimation under the inter-superblock submodel, one has to
take into account the matrix C,, which can be obtained (alternatively to the
formula used in Example 4.1) from the formula Cy = Ryn’R}, (see the proof of
Theorem 3.3). Since here

15 ¥ -1’ -1--151""1" 1 -1

Rizigoro v 1% o

it follows that

fuln-~10 ~1o S5, JedsleSiged ]
D S e T
¥ LS T e e e e

5 iy S ilg o ot @y tegourd
T 39§ alpilviodd owll batssdgsain Lo la of rank 1.
Lo =i sbhissdasidi sobyed lossd
1 =1y=l;-0s 3 gy .1 &
oo T YR EMUR: AR e, (S, B |

Evidently, there is only one contrast which can be considered for estimation
under the inter-superblock submodel. It is the contrast giving the three-factor
interaction, that which cannot be estimated under the previous two submodels.
As the columns of the incidence matrix R are linearly independent, the conditions
of Corollary 3.4 are satisfied, on account of Remark 3.4(b). Thus, there really
exists the BLUE of this contrast under the inter-superblock submodel. Also, it
should be noted that the corresponding vector s=r?c=[-1/3, 1/5, 1/5,
1/5, -1/8, -1/8, -1/8, 1/5]' satisfies the equalities C;s =0, Cys =0 and
r's =0, while R's = 0, and that the condition (ii) of Theorem 2.2 is satisfied
completely. Thus, by Corollary 8.5(c), s'Ay is the BLUE of the three-factor
interaction, ¢'t, under the overall model (2.7).
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Finally, since both parts of the condition (ii) of Theorem 2.2 are satisfied,
n"ll;ty is the BLUE of n”'r'v under the overall meodel (2.7), as it follows from
Corollary 3.5(d).

5. Concluding remarks

The general theory concerning nested block designs (NB designs) presented
in this paper reveals the possibilities of obtaining best linear unbiased estimators
(BLUES) for interesting treatment parametric functions either under the overall
randomization model (2.7) or its submodels related to the various strata of the
nested classification of available experimental units. Only in some special cases
(Section 3.5) the BLUEs are obtainable under the overall model. Usually for an
interesting function one can obtain the BLUE of it under one or more submodels.
For contrasts of treatment parameters the submodels to be searched are the
intra-block, inter-block-intra-superblock and inter-superblock submodels.

There may be contrasts for interest for which the BLUEs exist under all the
three submodels, or only under one or two of them. This depends on the relations
of the contrasts to the relevant C-matrices, and in case of the second and third
submodel also on some additional conditions. In case of the second model, the
additional condition relates the considered contrast to the departures of the
incidence matrices Nj, from relevant orthogonal structures, modified by possible
block size inequalities within the component designs Dy, h =1, 2,...,a [Corollary
3.1(b)]. One extreme case is when all D, are orthogonal (N}, = n;'r,Kk}). Then no
contrasts can be estimated under the inter-block-intra-superblock submodel [Co-
rollary 3.1(a)]l. The other extreme case is when for any D, for which
N, = nj,'r; k), the block sizes are eNqual,j.e. kigy=kogy = ... = Ky, hy = kg, (say). Then
any contrast generated by C, = Nok'éN'O obtains the BLUE under this submodel
(Remark 3.1). While the first extreme case would be rather uncommon, the second
may happen quite often in practice, see, e.g., Example 4.1. Another quite common
design case is that in which the columns of each N, are linearly independent. In
such a NB design the existence of BLUEs does not depend on the block sizes
[Remark 3.2(b)]. To this class of NB designs, e.g., the a-designs (see, e.g., Pat-
terson, Williams and Hunter, 1978) belong. As to the third submodel, the addi-
tional condition relates the considered contrast to the difference between the
departure of the incidence matrix N from relevant orthogonal structure and such
departures of the N, incidence matrices, this being modified by corresponding
possible block size inequalities, and also to the departure of the incidence matrix
R from relevant orthogonal structure modified by possible inequalities among
superblock sizes [Corollary 3.3(b)]. Again, two extreme cases can be visualized:
the first, when the design D is orthogonal, the second, when all block sizes are
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equal and all superblock sizes are equal. In the first of these cases no contrast
can be estimated under the inter-superblock submodel [Corollary 3.3(a)], in the
second, any contrast generated by C = Rgn "R/, will obtain the BLUE under this
submodel. Here, in fact, the first extreme case can be considered as the most
common. The resolvable block designs are usually constructed in that way. On
the other hand some factorial experiments may be designed in such a way that
R =n'rn, see, e.g., Example 4.2. If in such a case the columns of the incidence
matrix R are linearly independent (as in this example), then for any contrast
generated by Cg the BLUE exists under this submodel, independently of the
block and superblock sizes [Remark 3.4(b)].

The total-area submodel provides BLUEs for the general parametric mean,
or its multiplicities, only. This function cannot be estimated under any other
submodel. It obtains the BLUE under the overall model if and only if the block
sizes are constant within any connected subdesign of D*, and the sizes of the
superblocks are constant within any of the connected subdesigns of D [Corollary
3.5(d)].

Finally it should be noted that if a contrast is estimated under more than one
submodel, then it is desirable to combine the obtained information on the contrast
from the relevant strata. This’is not discussed in this paper as it needs separate
consideration.

Acknowledgement

This work was supported by KBN Grant No. 2 1129 91 02.

REFERENCES

Califiski T. (19938). Balance, efficiency and orthogonality concepts in block designs. «J.
Statist. Plann. Inference 36, 283-300.

Calinski T. and Kageyama S. (1988). A randomization theory of intrablock and
interblock estimation. Technical Report No. 230, Statistical Research Group,
Hiroshima University, Hiroshima, Japan.

Calinski T. and Kageyama S. (1991). On the randomization theory of intra-block and
inter-block analysis. Listy Biometryczne - Biometrical Letters 28, 97-122.

John J.A. (1987). Cyclic Designs. Chapman and Hall, London.

Mejza S. (1992). On some aspects of general balance in designed experiments.
Statistica 52, 263-278.

Mejza S. and Kageyama S. (1994). Some statistical properties of nested block designs.
Paper presented at the International Conference on Mathematical Statistics
ProbaStat’94 held at Smolenice, Slovakia.

Nelder J.A. (1965). The analysis of randomized experiments with orthogonal block
structure. I. Block structure and the null analysis of variance. Proc. Roy. Soc.
(London) A 283, 147-162.



Randomization in nested block designs 77

Nelder J.A. (1977). A reformulation of linear m.del (with discussion). J. Roy. Statist.
Soc. A 140, 48-77.

Patterson H.D. and Thompson R. (1971). Recovery of inter-block information when
block sizes are unequal. Biometrika 58, 545-554.

Patterson H.D., Williams E.R. and Hunter E.A. (1978). Block designs for variety
i trials. J. Agric. Sci. 90, 395-400.

Pearce S.C. (1983). The Agricultural Field Experiment. John Wiley, Chichester.

Preece D.A. (1967). Nested balanced incomplete block designs. Biometrika 54,
479-486.

Rao C.R. and Mitra S.K. (1971). Generalized Inverse of Matrices and its Applications.
John Wiley, New York.

White R.F. (1975). Randomization and the analysis of variance. Biometrics 31,
552-572.

Zyskind G. (1967). On canonical forms, non-negative covariance matrices and best

and simple least squares linear estimators in linear models. Ann. Math. Statist.
38, 1092-1109.

Received 18 October 1994; revised 10 December 1994

O randomizacyjnej teorii do§wiadczen w uktadach
o blokach zagniezdzonych

Streszczenie

W pracy przedstawiono ogélny model randomizacyjny dla dodwiadezerr w ukladach
o blokach zagniezdzonych, to znaczy dwuwarstwowych, oraz podano warunki
otrzymywania najlepszych liniowych estymatoréw nieobcigzonych w tym modelu.
Poniewaz okazuje sie, ze warunki te sg bardzo ograniczajace, rozwazane jest rozlozenie
tego modelu na cztery odpowiednie podmodele warstwowe. Znaleziono warunki
otrzymywania najlepszych liniowych estymatoréw nieobcigzonych w tych
podmodelach. Ponadto pokazano, pod jakimi warunkami najlepszy liniowy estymator
funkeji liniowej parametréw obiektowych otrzymany w jednym z podmodeli jest
Jjednoczesnie takim estymatorem w modelu calo$ciowym. Dwa dyskutowane przyklady
ilustruja zastosowanie podanej teorii. Na zakoniczenie podano kilka wnioskéw ogélnych
dotyczacych rozwazanych ukladéw do§wiadcezalnych.

Stowa kluczowe: najlepsza liniowa estymacja nieobciazona, uklady o blokach
zagniezdzonych, analiza wewnatrzblokowa, analiza miedzyblokowo-wew-
natrzsuperblokowa, analiza miedzysuperblokowa, model randomizacyjny.



